First IEEE Conference on Evolutionary Computation (ICEC '94), Orlando, Florida, 27-29 June 1994

A Combined Neural and Genetic
Learning Algorithm

Lampros Tsinas and Bernd Dachwald

Universitdt der Bundeswehr Miinchen
Werner-Heisenberg-Weg 39
85577 Neubiberg, Germany

Abstract

Neural networks and genetic algorithms are well-known representatives of learning proce-
dures. In this paper a hybrid procedure, which combines both concepts, is introduced. Its
functionality is presented on a typical pattern recognition problem.

Introduction

An optical sensor system (CCD-camera) constitutes the basis for a successful recognition of
important features in the restricted environment of an autonomous mobile robot (ATHENE) and for
the behavior-based navigation for this "intelligent" technical system. ATHENE provides a good
platform for the development of learning, vision-equipped robots [Wershofen, Graefe 93]. Such a
representative of the nearest generation of robots, should be able to process its multisensorial
input data (in this case only video data) at a higher "intelligence" level. Furthermore, it should be
able to realize and recognize important parts of its "world section". Analogous to human abilities,
it should also be able to learn some (or all) of the information processing steps (feature extraction,
object recognition, navigation, situation perception, etc.).

The backpropagation algorithm (BP) [Rumelhardt et al. 86] is at present the most popular learn-
ing algorithm for multilayered feedforward neural networks. It constitutes the basis of many inves-
tigations, further developments and applications ([Pomerleau 92], [Tsinas, Graefe 93]). Other net-
work-models, like ART [Grossberg 82] and LVQ [Kohonen 84] have also proved their abilities. In
the last three decades - inspired by Darwin's theory of evolution and parallel to the development
of neuro-science - the development of genetic algorithms (GAs) proceeded [Holland 92]. The
basic idea of these algorithms is, that in a set of individuals exposed to selection, fitter individuals
produce more offspring than less fit individuals, and consequently make their way in the struggle
for life. Applications of GAs cover a wide spectrum ([Schulze-Kremer 93], [Jakob et al. 92]). A
combination of both categories of learning methods - exploiting the specific advantages of BP and
GAs - may result in a more powerful, more robust and probably faster learning procedure. First
results in this direction are presented in [Petridis et al. 92].

We have examined the efficiency of some learning algorithms for the automatic evaluation of
visual information. Therefore a hybrid method, consisting of BP and a genetic algorithm, was
developed. This learning algorithm (CoNGA: Combined Neural and Genetic Algorithm) was tested
on a typical classification problem and compared with BP. The learning algorithm, the learning
task and some results of our experiments are described below.

0-7803-1899-4/94 $4.00 ©1994 IEEE 770

dachwald
Propulsion for Space Transportation of the XXIst Century - 6th International Symposium - Versailles, France, 14-16 May 2002

dachwald
Propulsion for Space Transportation of the XXIst Century - 6th International Symposium - Versailles, France, 14-16 May 2002

dachwald
Propulsion for Space Transportation of the XXIst Century - 6th International Symposium - Versailles, France, 14-16 May 2002

dachwald
First IEEE Conference on Evolutionary Computation (ICEC '94), Orlando, Florida, 27-29 June 1994

CoNGA

CoNGA (Combined Neural and Genetic Algorithm)
is a learning algorithm which combines distinct learn-
ing methods. In recent years many experimentation
was carried out about the training of neural networks
by genetic algorithms and numerous papers present
advancements and results ([Montana, Davis 89], [Petri-
dis et al. 92], [Whitley, Hanson 89]). In contrast - but

features can be found within CoNGA in combination:

Backpropagation

4

actual neural network

partial solution

b) Instead of the generally used generational repro-

not antagonism - to the known work, the following f

a) In contrast to the traditional binary encoding, the GA with Delta Coding
parameters to optimize are encoded as floating-
point strings.

Fig. 1

duction, where all individuals of the population The hybrid nature of CONGA.
reproduce themselves at every time step, the steady-state reproduction-technique is pre-
ferred and applied. Using this technique, at one time step only two individuals create off-
spring, and therefore less expenditure of computation is required.

c¢) In contrast to the ordinarily used fitness proportional selection-technique we allocate the

reproductive trials according to the rank of the individuals in the population (l/inear ranking
selection) [Whitley 89].

d) The search strategy of Delta Coding [Whitley et al. 91] is employed and modified for

floating-point strings. Delta Coding is based on the idea that a string can also express a
distance away from some previous partial solution. This partial solution is the best known
solution so far. Using Delta Coding, at any time only a dynamically selected subspace (a
so-called n-dimensional hypercube, where n is the number of parameters) of the whole
search space - constructed around the most recent partial solution - is explored. After the
population has converged to one solution, it is reinitialized and the new solution is stored
and taken as the center of the new (reduced or enlarged) hypercube.

e) One-point crossover, uniform crossover [Syswerda 89] and crossover nodes [Montana 91]

are used as genetic operators. The application probabilities of the genetic operators are
dynamically adapted during the computation [Davis 91]. Because of the reinitialisation of
the population, every time it has converged, a mutation-operator is not necessary [Whitley
etal. 91].

The GA described by a) to e) is combined with the standard backpropagation algorithm
(Fig. 1). During the training CoNGA can switch from BP to the GA (and back). This
should be done, if the learning effort of the current method stagnates (low convergence)
and shows no significant improvement of the learning error in a definite number of time
steps (i.e. if it gets stuck into a local minimum). This allows the algorithm to escape from
local minima, because the BP-to-GA-switch spans the search space wider (hopefully wide
enough to escape the local minimum).

The basic requirement for the application of the GA is the mapping of the learning status of

the neural weight-architecture to a string. The learning status is completely described by the
weights and biases of the neurons. For that purpose a defined part of the string is assigned to each
neuron in the network. This part of the string stores the weights from the respective neuron to all
neurons of the previous neuron layer and the bias of the respective neuron. This mapping results
in a string that is identical to the learning status of a neural network.

771

Learning paradigm

A typical task in image processing is the)
recognition of objects. A even more com- input Iayer A B
plex task is to identify objects which have)%%

different shapes or views. In first approxi-

mation such object-views are handled as hidden Iayer 1 2 3
independent objects. One example — cho-

sen because of its view-varieties only — is %X
the recognition of dice-views. A die has output Iayer 4 5
six faces, but because the views of the

faces with two, three and six dots are not
invariant in 90(-rotation, we have to con- [newont | newon2 | newon3 | neuons [newons
sider nine different views which have to be
recognized clear as "Eigenviews" (Fig. 3).
For the recognition task we have at first S
computed the greyvalue-gradients over five w,: weight from neuron i to neuron j
image-rows of digitized images of the O bias neuronj

different dice-views. We took 35 values
per row which would be enough for the
classification. In some other experiments
we took larger sized greyvalue-gradient
sets. But sets with more than 35 values per row (or more than five rows) include redundant infor -
mation. To keep the computation time at a moderate level, we have chosen the smallest size for
the feature set. That leads to a feature vector with 35(5 = 175 components. The problem was
examined with BP, the plain GA and with the hybrid "trainer" CoNGA.

Fig. 2
The coding of a neural network as a string.

r r 4 r N[N
[] [] [] []
[] L L
[] [] [] []
I~ N N[NI
o O o O o o 000
[] e o
o o e o e o 000

Fig. 3
The nine views of the six faces of a die.

For the classification of the nine different object-views a neural network with 175 input neurons,
one hidden layer with ten neurons and one output layer with six neurons was selected. Each output
neuron matches to one of the faces (including the double views). During the training

175(10 + 10(6 = 1810 weights and 10 + 6 = 16 biases
have to be "learned". The input values (gradients) range from 0 to 129. The learning goal is, that
only the correct output neuron is active (output = 1.0) and all other output neurons are inactive
(output = 0.0). The database for the training consists of nine example-views.

Good parameters for BP were selected through trial-and-error (learning rate s = 0.4 and mo-
mentum p = 0.4). The populations contain thirty individuals for the plain GA-training and ten
individuals for the CoONGA-training. Using (different) random initialization-values for the weight-
structure of the network we made five independent training runs. The training results are pictured
in Fig. 4, 5 and 6, respectively for the BP-, the plain GA- and the CoNGA-training.

772

Fig. 4 and 5 show clearly, that the plain GA converges faster than BP in all five program runs.
Because of time-claim only five independent training runs were made and therefore we cannot
guarantee that anyone of the learning procedures may exhibit a better learning quality in some
other run, but the results are characteristic for each training. On one run the hybrid CoNGA -algo-
rithm was able to reduce the learning error to a value less than 10-6 after only 7500 time steps. It
is very unlikely, that randomly selected initial points (individuals) in the hypercube centered
around the best BP-solution exhibit a better performance. Due to that, every BP-to-GA-switch
leads to a peak in the curve (Fig. 6). (At present) non-optimum switch-criteria from the BP- to the
GA-part of CONGA and back cause CONGA to be outperformed by the plain GA in the other four
runs. The results show, that CONGA can be a powerful, sensible extension or supplementation to
other learning methods.

Backpropagation Genetic Algorithm with Delta Coding

102 ¢

10 E

10-3

L L L L L L L L : 10-6
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100(

time step time steo
Fig. 6 Fig. 5:
Backpropagation-training. GA-training.

CONGA

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 100!

Fig. 4
CoNGA-training.

Conclusions

A new hybrid learning method for network-like structures was described. It consists of neural
learning by the backpropagation algorithm and applies evolutionary, genetic operators. The learn -
ing behavior of the algorithm was tested on a characteristical image processing example. It was

773

able to prove its potential and allows to assume, that it may exhibit also good performance for
other than image processing problems or signal processing problems in general.

The development and the experiments demonstrate, that GAs (and CoNGA) have to be further
examined. Clear statements about the optimal switch-criteria from BP to the GA (and back) cannot
be made at the time. We think of an automatic selection of the (much enough) learning parameters.
But it is ambiguous, how that could be realized. Sure, one possibility is any kind of trial-and-error
method, perhaps assisted by some knowledge-based and problem-driven adaptation mechanism.
The way from the labs to the industries departments is still long.

References

Davis, L. (1991): Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

Goldberg, D.E. (1989): Genetic Algorithms in Search, Optimization and Machine Learning.
Addison Wesley, 1989.

Grossberg, S. (1982): The Adaptive Brain. Vols. I and II. Reidel Press, 1982.

Holland, J.H. (1992): Adaption in Natural and Artificial Systems. MIT Press, 1992.

Jakob, W.; Gorges-Schleuter, M.; Blume, C. (1992). Application of Genetic Algorithms to Task Planning
and Learning. In Parallel Problem Solving from Nature, 2, Méanner, R. and Manderick, B. (eds.).
Elsevier Science Publishers B.V., 1992, pp 291-300.

Kohonen, T. (1984): Self-Organization and Associative Memory. 2nd ed., Springer-Verlag, 1984.

Michalewicz, Z. (1992): Genetic Algorithms + Data Structures = Evolution Programs.

Springer-Verlag, 1992.

Montana, D.J.; Davis, L. (1989): Training Feedforward Neural Networks Using Genetic Algorithms.

In Proceedings of the 1989 International Joint Conference on Artificial Intelligence. Los Altos, 1989.
Morgan Kaufmann Publishers, pp 762-767.

Petridis, V.; Kazarlis, S.; Papaikonomou, A.; Filelis, A. (1992) A Hybrid Genetic Algorithm for Training

Neural Networks. In Aleksander, 1., Taylor, J. (eds.), Artificial Neural Networks 2.
North Holland, 1992, pp 953-956.

Pomerleau, D. A. (1992): Progress in Neural Network-based Vision for Autonomous Robot Driving.
In Proceedings of the IEEE Symposium Intelligent Vehicles '92. Detroit, pp 391-396.

Rumelhardt, D. E.; Hinton, G. E.; Williams, R. J. (1986) Learning Internal Representations by Error
Propagation. In Parallel Distributed Processing. MIT Press, 1986.

Schulze-Kremer, S. (1993): Genetic Algorithms for Protein Tertiary Structure. In Machine Learning:
ECML-93, Vienna, 1993; Brazdil, P.L. (ed.), Springer Verlag, Lecture Notes in Artificial Intelligence
667, pp 262-279.

Syswerda, G. (1989): Uniform Crossover in Genetic Algorithms. In Schaffer, J.D., (ed.), Proceedings of
The Third International Conference on Genetic Algorithms. Morgan Kaufmann Publishers, 1989, pp 2-9.

Tsinas, L.; Graefe, V. (1993). Coupled Neural Networks for Real-time Road and Obstacle Recognition by
Intelligent Road Vehicles. In International Joint Conference on Neural Networks, [JCNN '93. Nagoya,
October 1993.

Wershofen, K.-P.; Graefe, V. (1993): Ein schender mobiler Roboter als Experimentierplattform zur
Erforschung des maschinellen Lernens. In 9. Fachgespréche iiber Autonome Mobile Systeme, AMS '93.
Miinchen, October 1993, pp 115-126.

Whitley, D. (1989): The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation Of
Reproductive Trials is Best. In Schaffer, J.D., (ed.), Proceedings of The Third International Conference
on Genetic Algorithms. Morgan Kaufmann Publishers, 1989, pp 116-123.

Whitley, D.; Hanson, T. (1989): Optimizing Neural Networks, Using Faster, More Accurate Genetic
Search. In Schaffer, J.D., (ed.), Proceedings of The Third International Conference on Genetic
Algorithms. Morgan Kaufmann Publishers, 1989, pp 391-397.

Whitley, D.; Mathias, K.; Fitzhorn, P. (1991} Delta Coding: An Iterative Search Strategy for Genetic
Algorithms. In Belew, R.; Booker, D., (eds.), Proceedings of The Fourth International Conference on
Genetic Algorithms. Morgan Kaufmann Publishers, 1991, pp 77-84.

774

