Bernd Dachwald
Interplanetary Mission Analysis for Non-Perfectly Reflecting 
Solar Sailcraft Using Evolutionary Neurocontrol
In: Advances in the Astronautical Sciences, Vol. 116: Astrodynamics 2003 – Part II (Proceedings of the AAS/AIAA Astrodynamics Conference 2003, Big Sky (MT), USA) Univelt, San Diego, pp. 1247-1262 (AAS-03-579)
Solar sailcraft trajectories are typically presented for 
high-performance sailcraft, assuming that the sail is an ideal reflector, or 
considering the non-ideal reflectivity through an overall efficiency factor. 
Otherwise, using traditional local trajectory optimization methods, it is 
difficult to generate the required initial guess. A real solar sail, however, is 
not a perfect reflector and a thorough trajectory simulation must therefore take 
into account the optical characteristics of the real sail film that lead not 
only to a reduced magnitude of the solar radiation pressure force but also to a 
directional deviation.
Within this paper, minimal transfer times for rendezvous missions within the 
inner solar system are presented for perfectly and non-perfectly reflecting 
solar sailcraft, including a typical near-Earth asteroid rendezvous (1996FG3) 
and a typical main belt asteroid rendezvous (Vesta). For the different solar 
radiation pressure force models, the minimal transfer times are compared, 
extending thereby the currently available data to moderate-performance sailcraft 
of the first generation.
Using evolutionary neurocontrol as a global trajectory optimization method, it 
is shown that there is a considerable increase of about 5-15% in the minimal 
transfer times, if the non-perfect reflectivity of the solar sail is taken into 
account. This fact must be considered for a thorough mission analysis. The 
simplification that the non-ideal reflectivity of the sail can be modelled with 
an overall sail efficiency factor should only be made for very preliminary 
mission analyses.
► back